
AD-Alll 854 SYSTEMS AND APPLIED SCIENCES CORP RIVERDALE MO F/G 12/1
AN INVESTIGATION OF THREE METHODS FOR SPECTRAL REPRESENTATION O--ETC(U)
AUG 81 I M HALBERSTAM F19628-81-C-039

UNCLASSIFIED SCIENTIFIC-1 AFGL-TR-81-0234 NL

llIEEElllllll
/llfl/ i.m..hhf,

I EEEEEE~h



Iii - 2II j 2.

11111.25 11 1.4 111.

AMICROCOPY RLSOLUTION ILS! CHAR!
NARN I W I U' 0 ANDAR11I



GL-TR.141-0234

N INVESTIGATION OF THUSE METIODS FOR
$?ECTPAL =EPRESENTATION 'OP RANDMLY

[DISTRIBUTED DATA

I "Isidore M. Halberstam

00

Pnf Systems and Applied Sciences Corporation
?.' 6811 Kenilworth Avenue

Riverdale, Maryland 20737

21 August 1981

Scientific Report No. 1

Approved for public release; distribution unlimited

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNIITED STATES AIR ?PORCE'

j.HANSCOM APB, MABOXHITSTL]S 01731 Q

W O8O095



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W"on DoetEntored)l

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS- BEFORE COMVPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFGL-TR-81-0234

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIODCOVERED

AN INVESTIGATION OF THREE METHODS FOR SPECTRAL Scientific Report No. 1

REPRESENTATION OF RANDOMLY DISTRIBUTED DATA T PERFORMING OG. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(*)

Isidore M. Halberstam F19628-81-C-0039

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Systems and Applied Sciences Corporation AREA & WORK UNIT NUMBERS

6811 Kenilworth Ave., P.O. Box 308 61102F 667000AB
Riverdale, MD 20737

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory 21 August 1981
Hanscom AFB, MA 01731 13. NUMBER OF PAGES

Manager/Charles Burger/LY 33
14. MONITORING AGENCY NAME I ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS.. DECLASSIFICATION/DOWNGRADtNG

SCHEDULE

16. OtSTRfBUTION STATEMENT (of this Ropr)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered 1-i Block 20, II dIfferent grow Report)

IS. SUPPLEMENTARY NOTES

19. KEY WOROS (Contlnue an reverse side if eesear/ and Identify by block number)

OBJECTIVE ANALYSIS INTERPOLATION
INITIALIZATION SPECTRAL MODELING
NORMAL MODES DATA ASSIMILATION
ORTHONORMAL EXPANSIONS

20. ABSTRACT (Continue an reverse side if t.coeowy and Identify by block ,,ui )

Three methods are proposed for representing randomly distributed data by a
truncated Fourier series. These methods involve the use of:
1. a set of linear equations based on a simple least-squares approach,
2. empirical orthogonal functions derived by the Gram-Schmidt process, and
3. a step-by-step approach where each coefficient is solved independently
by subtracting the contribution from previously computed coefficients. The
methods are tested against a known function (finite cosine series) for dif-

DO I FJAN172141 COITION OF I NOV SS IS OSOLtTE UNCLASSIFIED
SECURITY CLASSIPICATION Of THIS PAGS (ftn Daea 81M10



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wlhia Dlate Brlend)

ferent distributions of data and different truncation and simulated observa-
tion errors. Results show that if the empirical orthogonal functions are
linear combinations of cosines, then Methods 1 and 2 yield identical coef-
ficients. This offers two convenient methods for achieving the same goal,
depending on the number of data points and the trur.cation. Results also
indicate that Method 3 is not very sensitive to the number of data points
or to their distributions while Methods 1 and 2 are, failing when the number
of data points approaches the critical value for resolving the waves.

t

UNCLASSIFIED
SECURITY CLASSIFICATIOU OF TWO PAGfflen Data tto#0o

-. I



I " SSD-T-63 10-0125-82

TABLE OF CONTENTS

REPORT DOCUMENTATION PAGE ................................ 1

I. INTRODUCTION ....................................... 4

II. ORTHOGONAL EXPANSIONS .............................. 5

III. THREE METHODS ...................................... 6

IV. TESTS . .............................................. 8

V. RESULTS ............................................ 9

VI. SUMMARY AND CONCLUSION ............................. 29

A cme s 91,0,n Fo**r
NTiS C7 ,"l

DTYC Tx
Uzann r , !c o d
Jus3ti +: cat ior__

0101

( n ....... Str ""1 i" : i nn / ~e
D Avail. ! ,'-,o, jiCodes

Di~



I. INTRODUCTION

Objective analyses of meteorological variables have always de-

pended on interpolation schemes. Some methods center on local fits

of data to specific grid points, where subsequent processing removes

inconsistencies. Others attempt to fit given observations to a global

network by spectral representation of the variables. But these usually

require a priori interpolation to equally-spaced points in order to
1

apply the spectral integration. Flattery (1971) , for example, used

Hough functions as a basis for his analysis in the meridional direc-

tion, while using Fourier expansions in the zonal direction and empir-

ical functions in the vertical. But he, too, required that the observed

data first be interpolated to fixed volume elements before the spectral

expansions could be determined. Once the spectral coefficients are

known, the variables can be interpolated to any desired location. With

finite difference models, this redundancy of interpolations may seem

wasteful, but it has its advantages, especially because Hough functions

are period-dependent and can be used to control initial imbalances.

For spectral models, spectral coefficients are the required initial

conditions, but, unless Hough functions are used in solving the model

equations, they must first be transformed to the correct basis. This

may be accomplished through relationships between the Hough functions

and the desired basis or through numerical integration of the values

represented at given grid points as with the finite difference models.

In either case, current analysis techniques require interpolation of

kQkseryed dat.ato squally-spaced points, a step which may alter the

spectral nature or the data, as pointed out by Yang and Shapiro (1973)

1. Flattery, T. W, 1971: Spectral models for global analysis and
forecasting, 'Poc. Sixth AWS Tech. Exchange Conf., U. S. Naval
Academy, AWS T~ch Rep 242, 42-53.

2. Yang, C.-H. and R. Shapiro, 1973: The effects of the observa-
tional system and the method of interpolation on the computation
of spectra, J. Atmos. Sci., 30, 530-536.
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This is mainly due to the weights imposed during interpolation. Be-

cause of distance and distribution of observation points vis-a-vis

the grid points, certain data will be unevenly weighted. One would

therefore like to avoid interpolation, if at all possible, and derive

the spectral coefficients directly from the unevenly spaced data.

This work will examine some possible procedures for Accomplishing this

and the problems related to each of the methods.

II. ORTHOGONAL EXPANSIONS

Before discussing the possible methods for deriving spectral

coefficients from randomly distributed data points, it may be useful

to review some of the properties associated with expansions in ortho-

gonal bases. A set of functions 4)n(x)l is orthonormal over x c[a,b]

i f k( j(x dx = 6 where 6 = 1 when j = k and = 0 otherwise.

There are certain properties associated with {n) with respect to an

arbitrary function f(x) in [a,b) that are important:

1. If f(x) is bounded and continuous at all but a finite number

of points, it may be expressed as an infinite series of the orthonormal

functions, i.e., f(x) a (x) except at the points of discontinuity.
i=0 i i

2. The coefficients{ai}can be derived by implementing the ortho-

normal property of 0.}. For any k, a =f (x)dx.

3. The coefficients {ai} satisfy a least-squares criterion for

any truncation 0 < M < -. Thus, for any M, (x) - X ai ) ] dx

will be a minimum.

When dealing with a set of discrete data, integrals may have

to be approximated in order to employ orthogonal expansions. When

the data are evenly spaced, approximations to integrals can become

very close, depending on the orthonormal functions in question and

the highest degree required. Fourier transforms, for example,

5



can be approximated with a great deal of precision over the interval

Pwn] if sufficient points and their spacing are suitable for the set

of functions {cos nx} ,Isin nx , or (einX . If the orthogonal

functions are polynomials, such as Legendre polynomials over the inter-

val [-i,I] , transformations of polynGmials can be made exact by intro-

ducing quadrature formulae with sufficient points to resolve the com-

bined highest degrees of the Legendre polynomial and the polynomial in

question. When the data are not equally spaced, or not spaced with

regard to the particular quadrature formula employed, the degree of

departure will depend on the approximation used.

III. THREE METHODS

In deriving the coefficients for an orthogonal expansion when

the data points are unevenly spaced, one must first specify the cri-

teria that one seeks to satisfy before solving for the coefficients.

One may, for instance, wish that the series satisfy a least-squares

fit, or one may desire that the coefficients decrease in magnitude

with increasing wavenumber. For this study, three methods were se-

lected for comparison with a known function consisting of a finite
()n -2

cosine series of K terms with the coefficients equal to (-I)n(n+l)

where n is the wavenumber. K is a parameter that can be varied.

The generating function, f(x), is, thus, equal to
K j -2Z(-i (j+l) cos 2 jx. There are N values of x, selected between

j=0

0 and 0.5, where N is, again, a parameter of the problem. The approx-

imating series is assumed to be truncated at M terms. The three methods

are:

1. Derivation of the coefficients by a direct least-squares

approach. M + 1 independent linear equations are derived for the coef-

ficients, ai, by requiring that ii[f(xi) - Macos 2IRx] be a

minimum. The coefficient matrix is symmetric with general term

N
ckj = cos 2rjx i * cos 2wkx.. (1)

6I
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2. Derivation of empirical orthogonal functions (EOF's). One

chooses a set of functions IP n such that they satisfy the conditions

of orthonormality over the data points, i.e.,

N

1/N P.(xi)P(x i) = 6. (2)i=l j

These functions must be recalculated for each new distribution of

data points. The nature of the functions is also arbitrary. Or-

dinarily they are chosen as polynomials with coefficients derived

by the Gram-Schmidt procedure. For purposes of comparison in this

study, the functions were chosen as linear combinations of cosines.

That is, k

Pk(x)= L b. cos 27Tjx. (3)

j=0

The Gram-Schmidt method is just as applicable here as with poly-

nomials. f(x) can then be approximated by the series
M

0 P (x), where the coefficient a is virtue of the
n=Ogiven by

orthonormality condition, namely

N

k = I/N f(x i) Pk (x ). (4)

combinations of the s'S and b.'s should yield the equivalent of
n I

the a.'s in Method 1 for cross comparison.

3. Deriving the coefficients one-by-one. Were the cosine

functions truly orthogonal under a summation over the randomly-

spaced points, the coefficients could be derived singly and would

still satisfy the least-squares requirement. Because they are not

orthogonal for the unequally-spaced points, however, coefficients

derived singly will not satisfy the least-squares requirement for the

entire series, but they can be restricted so that they will event-

ually decrease in magnitude with increasing wavenumber. This cri-

terion dictates that low wavenumbers be made representative of the

function's large scale, while high wavenumbers represent the unfil-

tered smaller waves. To achieve this, one can simply sequentially

subtract the longer waves leaving only the higher wavenumbers. A

7



particular wavenumber is then filtered out by multiplication by the

orthonormal function of the desired wavelength and adding over all

points. Were the points correctly spaced or the orthonormal function

truly orthonormal, the filter would work perfectly. Because of uneven

spacing, however, the method captures more waves than intended. There

is a guarantee, however, that the coefficients of higher order wave-

number will ultimately represent waves of decreasing length. This

aspect has been termed the "finality" condition by Holmstrom (1963)3

who imposed it on the creation of his EOF's for analyzing geopotential

heights. It, in effect, guarantees convergence of the series through-

out the interval.

Accordingly, the first order coefficient, a0 , should represent

the mean of the function, 1/N f(xi). The second coefficient, a,

represents the departure from the mean filtered by cos 2ffx. and nor-
N 2

malized by i cos2 2I x..

i=l1

Thus a1 = i IL= (xi) - a0j cos 2rtx i ji~ cos2 2 xi ). This process

is continued so that any coefficient is given by

ak [ - a1co(N 2o
a k , f(xi) -E a cos 2 jxi  cos 27kx i=l Cos 2rkx. 5)

TV. TESTS

A series of tests was made with regards to distribution, number,

and error. The tests can best be understood by a description of the

label connected with any given run. A typical run was described by a

3. Iolmstrom, I., 1963: on a method for parametric representation
of the state of the atmosphere, Tellus, 15, 127-149.



label which looked like d, N n, M =m, K -k, R. Capital letters

are fixed, lower case letters are variable.

d - Distribution. Three types of distribution were tested.

Evenly spaced data points, d EE, implies that the N data points were

placed in positions which would enable fast Fourier transforms, i.e.,

x. (2 1)14) , j 1 .......,N. Random placing of the data was

performed uniformly, d U, or by staggering the data points, d E5,

so that 90 percent of the points lay in the interval 0 x < 0.25

and 10 percent in the remaining half.

N,M,K - Number. N refers to the number of data points (n),

assumed known. M refers to the truncation limit (in) on the approxi-

mating series, while K refers to the upper limit (k) on the generat-

ing function. The default values for m and k are 15, when not spec-

if ied on the label.

R - Random Error. When the label "R" appears, "observational"

errors were added to the data before the coefficients were determined.

The error, e, was uniform random and of magnitude < 0.01 (as compared

with a maximum coefficient magnitude of 1.0).

Thus a label U, N = 50, R refers to a test where 50 data points

were uniformly distributed between 0 and 0.5, 15 terms were used for

both the generating and approximating series, and an error of at most

±0.01 was added to each data point. A label S, N = 50, M =10 implies

a staggered distribution of the 50 points, 15 terms in the generating

function and only 10 terms in the approximating series.

V. RESULTS

Although Methods 1 and 2 differ procedurally, they yield the

same results. The reason for this is that the EOF's are linear com-

binations and of the same degree as the cosine series. Because of

this, they both span the same vector space and will give the same

approximation to any function. In general we can prove the following

theorem:

Given *wo sets of functions IQ n(X)l and 10 n(x)l , integrable

C, raj.' cnere Qn (x) n bL$R,(x), b i 4 0, and also a set of

9



coefficients In such that f (x) - a (xQ(x) dx is a minimum
a n=0

for a given integrable function f(x), then the coefficients lan }

M M
where E On0n (x) = ( nQn (x) are exactly those which will minimize

n=0 n=O

f (x) - an n(X) dx.
n=O

Proof: Since the coefficients 3., j = 0,...,M, minimize the
integral of the squared difference, we have by differentiation with

respect to each ak the condition fb [f ( x ) - (Q(xQ)] Qk (x)dx = 0 ,

k = 0 ........,M. Substituting for Qk and Qj, we get

f(x) - i 0jij(x)]: b k(x)dx = 0 for k = 0 ...... M. Since

a I j=O =

b k + 0, we can eliminate each term of the series sequentially by

starting with k = 0 and working up to k = M. This leaves us with the

condition (x) - E (x) ]k(x)dx = 0. But this is simply the-a j=0 I

necessary condition for proving that the coefficients a., j = ..... M,

minimize the squared difference between the f(x) and the series in terms

of the Ois.

Because the two methods differ computationally, however, they

will yield different results when approximate solutions are either

very close to the true solution or very far. Table 1 exemplifies

this feature, in giving the root mean square (rms) error between coef-

ficients of the approximating series and the true coefficients for

equally spaced points. Without the addition of random error to the

data, rms errors for all three methods are within the noise level of

the computer algorithms. The addition of random error to the data

affects all methods equally; rms errors for fewer points are only

slightly greater than for N = 30. Truncation to M = 10 has no detri-

mental effect even in the face of random error.

10



TABLE 1. RMS Differences between Coefficients of the Generat-
ing Series and the Coefficients of the Approximating Series for Uni-
form Distribution.

Run Method I Method 2 Method 3

E,N=30 2.1543xi0- 14 2.5977xi0 - 14 1.9510xi0 - 14

E,N=16 2.0282x10- 14  2.5152x10 - 14  1.4059x10- 14

E,N=30,M=I0 2.5182xi0 -14  2.6'47xi0 -14  2.3845xiO - 14

E,N=16,M=I0 1.7838x10
- 14  

2 .17 07 x1 0
- 14  1.6992x10-

14

-14 -14-1
E,N=16,M=8 1.8979x0 2.4168x0 1.8973xi01 4

E,N=30,R 1.1936x10-
3  1.1936x10 - 3  1.1936x10-

3

E,N=30,M=1O,R 1.2822xi0 - 3  1.2822x10 - 3  1.2822x10 -3

Figures la-b show the effect of number on U and S distributions,

respectively, for all three methods. Methods I and 2 do not coincide

for these cases because they are still within the noise range of the

algorithm, even for S distribution where the rms error rises rapidly

with decreasing N. It is obvious from these figures that while

Methods I and 2 are better than Method 3 for both distributions, at

least for N = 30, they become highly unreliable for decreasing N.

Method 3 is barely affected by number and maintains approximately

the same estimates of coefficients even when N approaches the criti-

cal minimum of 15 points for resolving the 15 cosine waves. Note

also that with U distribution, increasing the number of points beyond

30 has very little impact on error for any of the methods. For S

distributions, however, there is a distinct effect caused by vary-

ing the number of points.
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Figures 2a-b depict the effects of truncation (M = 10) on the

rms error. Here, error levels are substantially higher than for

M = 15. Oddly, the rms error for all methods increases drastically

for N - 15 for U distribution, while for S distribution, only Methods

1 and 2 cause a precipitous rise in rms error as N drops.

Table 2 lists the rms errors for runs including the addition

of random error to the data. Method 3 fares much better here than

in previous comparisons. In general, Methods 1 and 2 seem superior

in cases when the ratio of N/M is high, while Method 3 prevails when

the ratio is low, or when the S distribution is encountered. In

fact, for S distribution and N - 16, Methods 1 and 2 fail to achieve

credible approximations of the coefficients.

TABLE 2. F<MS Differences between Coefficients of the Generat-

ing Series and the Approximating Series for Runs Involving the Addi-
tion of Random Error to the Data (Other than E Distribution Portrayed

in Table 1).

Run Method 1 Method 2 Method 3

U,N=45,R 1.9280xi0 - 3  1.9280xi0 3  6.9638x10- 3

U,N=16,R 5.4372 5.4372 2.0119x10-2

S,N=45,R 7.1964xi0 -I  7.1964xi0 - I  4.5070xi0 -2

S,N=16,R Failed Failed 3.8026xi0 2

U,N=30,M=I0,R 3.1441xi0 - 3  3.1441x10 -3  8.7045xi0 - 3

S,N=30,M=10,R 8.0520x0 -3  8.0520xi0 4.2164x0 -2

S,N=16,K=20,R Failed Failed 3.8103xi0- 2

14
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Figure 5b. Spectra for the generating series, Methods
I and 2, and Method 3 for S, N = 30, M = 10, R.
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Figure 5c. Spectra for the generating series, Methods
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Figure 7a. values of the generating series and the approximating
series for both U and S distribution, N =16, M = 10, as a function
of x for Methods 1 and 2.
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imating function still minimizes the squared error with the qiven

data. Apparently, however, the distribution of the data points left

out the interval between, roughly, 0.25 and 0.45, allowing the func-

tion to roam freely between these values. Method 3 may not fit the

data very well in places but, because of its finality condition, pre-

vents runaway errors.

VI. SUMMARY AND CONCLUSION

Three methods have been studied which yield coefficients of

a finite cosine series in an interval, given a sampling of data [n

that interval. The first method directly solved the least-squares

condition by matrix inversion. The second involved the calculation

of EOF's, while the third imposed the condition of finality and the

coefficients were derived singly. It was shown that since the EOF's

were specified as linear combinations of cosines, the first two meth-

ods would yield the same results.

The following conclusions can be drawn from examining the rms

errors and the spectra of the various approximating series produced

by the methods:

1. Number is less of a factor than distribution. Even when

the number of points approaches the critical value, if they are

equally spaced, they will result in perfect approximation. Uniformly

distributed data will generally result in closer approximation than

non-uniformly distributed data.

2. Method 3 does not provide as close a fit as Methods 1 and 2

but does not result in divergent behavior for poorly distributed data.

The divergent behavior of Methods 1 and 2 is due to the fit of the

series with the data given, which allows significant degrees of free-

* dom for the intervals not covered by data. This is also related to

the "ill-conditioned" nature of the coefficient matrix which must be

* inverted in Method 1, as will be discussed below.

3. The addition of random error to the data has very little

impact on the results. At least for the magnitude of error tested,
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the deviations from unperturbed cases are mimimal. Since the errors

are uniformly random, the averaging process over the data points acts

as a filter and diminishes the effect of these observation errors.

4. Truncation error has a nominal effect on the coefficients

especially in the high wavenumber regime. In many cases, when data

points are few, it is preferable to truncate rather than to go to

higher wavenumbers. This is because solution of Methods 1 and 2

makes the wavenumbers interdependent, so that the truncation is "felt"

in all coefficients. In Method 3, however, there is no danger of this

happening and the truncation limit Is arbitrary.

From analysis of the spectra in Figures 4 and 5, one notes that

Method 3, although designed to depict less of the function for increas-

ing wavenumber, does not result in monotonically decreasing coefficients

with increasing wavenumber. The reason for this, as stated above, is

that, because of non-uniform distribution, the approximation of indi-

vidual coefficients is not precise. Thus when subtraction of these

waves from the original data is performed, the remainder will not be

accurate, leading to more impreciseness. The method assures, however,

that the approximation will eventually catch up and adjust itself to

the data, without diverging.

One may question, however, whether numerical integration is per-

haps superior to Method 3 for approximating the coefficients. That

is, one may attempt to derive ak by numerically integrating

2 f(x) cos 2nkx dx by quadrature formulae. Unless the data points

are correctly spaced for the relevant quadrature formula, numerical

integration will involve unwittingly weighting certain data points.

This has the same effect as interpolation of data points to fixed grid

points before integration. As pointed out previously, such a pro-

cedure could affect the spectral nature of the data. As an example,

Table 3 indicates the rms differences between the coefficients of the

generating function and coefficients derived from the trapezoidal and

midpoint rule of integration. These results may be compared with

those found in Tables I and 2 and with Figures 1 and 2. The trapezoi-
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dal rule, being a closed Newton-cotes quadrature formula, required

inserting the end values of the generating function for each run.

Note that for E distribution the midpoint quadrature is exact, while

the trapezoidal rule is approximate. In general, rms differences

for numerical integration are significantly higher than for Method

3 (in some cases by an order of magnitude). The sensitivity to num-

ber and distribution of data points is also obvious, when one notes

the significant increase in error for S distribution as opposed to

U distribution and the jump in error caused by a reduction in number.

Method 3, which works on wave space rather than physical space, is

better suited to represent the spectral nature of the particular

function for these distributions, while numerical integration by

concentrating on physical space is not as efficient.

TABLE 3. RMS Differences between Coefficients of the Generat-

ing Series and the Approximeting Series for Runs Involving Trape-
zoidal and Mid-Point Quadrature Integrations.

Run Trapezoidal Mid-point

-2 -14
E,N=30 3.39793x10

2  2.152034x10

E,N=30, M=10 3.27108xi0
2  2.551610xi01

4

U, N=30 8.3108xi0
- 2  7.64284xi0

-2

U, N=100, M=10 1.13156x0
2  3.97745x10

3

U, N=30, M=10 5.55853xi0
- 2  3.44025xi0

-2

U, N=30, M=10, R 5.57984xi0
2  3.44947x10

2

U, N=16, M=10 1.25008xl0
- 1 1.07500xi0

-1

S, N=100, M=10 
2.96793x10

- 1  2.96183x0-I

S, N=30, M=10 3.92814x0' 4.07799x0I

S, N=16 4.91530x10
1  5.23083x10

- 1
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Methods 1 and 2 are apparently not based on physical spacing

either but on finding a function which approaches most closely the

available data. As such, the spacing affects the choice of coeffi-

cients by prescribing where along the x-axis the approximating func-

tion must approach the true solution. But the function is free to

roam through other values of x where data are not available. The

matrix of Method 1 can sometimes serve as an indicator as to when

Methods 1 and 2 will fail. By examining the ratio of the eigenvalues

of the coefficient matrix in the least-squares problem, one can ascer-

tain the amount of distortion involved in the mapping of the solution

vector to the given vector containing the data points. If the ratio

of eigenvalues is very large, it is an indication that a great deal of

maqnification and diminution will be present in the mapping, leading to

misrepresentation. Unfortunately, this is not a necessary condition

for the solution to diverge from the true solution. In the

problem considered here, the matrix is real symmetric with entries

ckj given by (1). The eigenvalues are therefore always real. The

ideal ratio of extreme eigenvalues y (i.e., for E distribution) is

2, because the elements of the matrix are simply ckj = N/2, ex-
ki k 14

cept when k = j = 0, where c = N. For S, N = 16, y = -2.126 x 1000
a clear indication as to why the method failed for that run. Yet

for U, N = 30, where the fit was very close (according to rms differ-

ences in the coefficients), y = 1.681 x 102, but for U, N = 100,

M = 10, where the fit was close, but not as close as U, N = 30, y

3.343. For U, N = 30, M = 10, R, where the fit is only slightly

worse than U, N 100, M = 10, y = 5.442. S, N = 30, M = 10, R

yields results which are only slightly worse than for the U distri-
2

bution, but its y = 9.463 x 10 . Thus, other criteria must be sought

to enable evaluation of Methods 1 and 2 and their applicability.

In meteoroloqical analysis one often encounters areas of sparse

data similar to the S distribution in this study. Results here in-

dicate that attempts to analyze data according to Methods 1 and 2

may produce runaway errors in regions of no coverage. Method 3, on

the other hand, while being a safe method, could lead to serious in-

accuracies. It may be best to combine methods by allowing Method 3

to provide a first guess in sparse areas which can then be used in
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conjunction with the given data in data-dense areas to p-.rovide analyses

according to Methods 1 and 2. The fact that Methods 1 and 2 will both

provide similar coefficients will allow a pragmatic evaluation of the

employability of each method for any given problem. F'or numerous coeffi-

cients the inversion of large matrices may be alleviated by employinq

Method 2. In other cases a simple matrix inversion m,- prove easier than

the two-step EOF method.

This study was limited to one dimension. The introduction of a

second dimension complicates the application of the three methods.

If points are randomly distributed in two-dimensional space, it is niot

obvious how one can represent a sum of functions to approximate the data.

With evenly distributed data, each dimension is considered separately,

but this is not feasible if points are not aliqned in any specific di-

rection. Future research will attempt to solve these fundamental prob-

lems and extend the results obtained here to higher dimensions.
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